Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatList(nil)) → mark(tt)
active(length(nil)) → mark(0)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = 2·x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 2·x1 + 2·x2   
POL(U52(x1)) = 2·x1   
POL(U61(x1, x2, x3)) = x1 + x2 + 2·x3   
POL(U62(x1, x2)) = 2·x1 + x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 2   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(U11(tt)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = 1 + 2·x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = 2·x1 + 2·x2   
POL(U42(x1)) = 2·x1   
POL(U51(x1, x2)) = 2·x1 + 2·x2   
POL(U52(x1)) = 2·x1   
POL(U61(x1, x2, x3)) = 2 + x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = 1 + x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = 2·x1   
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + x3   
POL(U62(x1, x2)) = x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(U31(tt)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 1 + 2·x1   
POL(U41(x1, x2)) = x1 + 2·x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1 + 2·x2 + x3   
POL(U62(x1, x2)) = x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
U411(X1, mark(X2)) → U411(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
MARK(U42(X)) → U421(mark(X))
U621(active(X1), X2) → U621(X1, X2)
MARK(U41(X1, X2)) → MARK(X1)
ISNATILIST(mark(X)) → ISNATILIST(X)
CONS(mark(X1), X2) → CONS(X1, X2)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(U21(tt)) → MARK(tt)
ACTIVE(U62(tt, L)) → LENGTH(L)
LENGTH(active(X)) → LENGTH(X)
U511(mark(X1), X2) → U511(X1, X2)
MARK(U31(X)) → MARK(X)
S(mark(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(U62(X1, X2)) → U621(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U52(tt)) → MARK(tt)
MARK(U62(X1, X2)) → MARK(X1)
ISNAT(mark(X)) → ISNAT(X)
U111(mark(X)) → U111(X)
U211(active(X)) → U211(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
U621(X1, mark(X2)) → U621(X1, X2)
U311(mark(X)) → U311(X)
MARK(U52(X)) → U521(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(tt) → ACTIVE(tt)
U421(active(X)) → U421(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U21(X)) → U211(mark(X))
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
U621(X1, active(X2)) → U621(X1, X2)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
MARK(U31(X)) → U311(mark(X))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
U411(X1, active(X2)) → U411(X1, X2)
S(active(X)) → S(X)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
U311(active(X)) → U311(X)
U211(mark(X)) → U211(X)
ACTIVE(U42(tt)) → MARK(tt)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(zeros) → ACTIVE(zeros)
U511(active(X1), X2) → U511(X1, X2)
MARK(length(X)) → LENGTH(mark(X))
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
U521(mark(X)) → U521(X)
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
MARK(U11(X)) → U111(mark(X))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ISNATLIST(mark(X)) → ISNATLIST(X)
MARK(U61(X1, X2, X3)) → MARK(X1)
U511(X1, mark(X2)) → U511(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)
U111(active(X)) → U111(X)
U521(active(X)) → U521(X)
MARK(s(X)) → S(mark(X))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
U421(mark(X)) → U421(X)
MARK(0) → ACTIVE(0)
ACTIVE(zeros) → MARK(cons(0, zeros))
ISNATILIST(active(X)) → ISNATILIST(X)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U511(X1, active(X2)) → U511(X1, X2)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
QDP
                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
U411(X1, mark(X2)) → U411(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
MARK(U42(X)) → U421(mark(X))
U621(active(X1), X2) → U621(X1, X2)
MARK(U41(X1, X2)) → MARK(X1)
ISNATILIST(mark(X)) → ISNATILIST(X)
CONS(mark(X1), X2) → CONS(X1, X2)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(U21(tt)) → MARK(tt)
ACTIVE(U62(tt, L)) → LENGTH(L)
LENGTH(active(X)) → LENGTH(X)
U511(mark(X1), X2) → U511(X1, X2)
MARK(U31(X)) → MARK(X)
S(mark(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(U62(X1, X2)) → U621(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U52(tt)) → MARK(tt)
MARK(U62(X1, X2)) → MARK(X1)
ISNAT(mark(X)) → ISNAT(X)
U111(mark(X)) → U111(X)
U211(active(X)) → U211(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
U621(X1, mark(X2)) → U621(X1, X2)
U311(mark(X)) → U311(X)
MARK(U52(X)) → U521(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(tt) → ACTIVE(tt)
U421(active(X)) → U421(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U21(X)) → U211(mark(X))
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
U621(X1, active(X2)) → U621(X1, X2)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
MARK(U31(X)) → U311(mark(X))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
U411(X1, active(X2)) → U411(X1, X2)
S(active(X)) → S(X)
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
U311(active(X)) → U311(X)
U211(mark(X)) → U211(X)
ACTIVE(U42(tt)) → MARK(tt)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(zeros) → ACTIVE(zeros)
U511(active(X1), X2) → U511(X1, X2)
MARK(length(X)) → LENGTH(mark(X))
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
U521(mark(X)) → U521(X)
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
MARK(U11(X)) → U111(mark(X))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ISNATLIST(mark(X)) → ISNATLIST(X)
MARK(U61(X1, X2, X3)) → MARK(X1)
U511(X1, mark(X2)) → U511(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)
U111(active(X)) → U111(X)
U521(active(X)) → U521(X)
MARK(s(X)) → S(mark(X))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
U421(mark(X)) → U421(X)
MARK(0) → ACTIVE(0)
ACTIVE(zeros) → MARK(cons(0, zeros))
ISNATILIST(active(X)) → ISNATILIST(X)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U511(X1, active(X2)) → U511(X1, X2)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 16 SCCs with 36 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(X1, active(X2)) → U621(X1, X2)
U621(X1, mark(X2)) → U621(X1, X2)
U621(active(X1), X2) → U621(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(X1, active(X2)) → U621(X1, X2)
U621(X1, mark(X2)) → U621(X1, X2)
U621(active(X1), X2) → U621(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X)) → U521(X)
U521(active(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(active(X)) → U521(X)
U521(mark(X)) → U521(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X)) → U421(X)
U421(active(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(active(X)) → U421(X)
U421(mark(X)) → U421(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(X1, active(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(X1, active(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(active(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(active(X)) → U311(X)
U311(mark(X)) → U311(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X)) → U211(X)
U211(active(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X)) → U211(X)
U211(active(X)) → U211(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ UsableRulesProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QDPSizeChangeProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U31(X)) → MARK(X)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(U62(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(U11(X)) → MARK(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(U11(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 1 + 2·x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1, x2)) = 2·x1 + 2·x2   
POL(U42(x1)) = 2·x1   
POL(U51(x1, x2)) = 2·x1 + x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1 + x2 + 2·x3   
POL(U62(x1, x2)) = x1 + x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U31(X)) → MARK(X)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(U62(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(zeros) → ACTIVE(zeros)
MARK(U41(X1, X2)) → MARK(X1)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(U41(X1, X2)) → MARK(X1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1, x2)) = 1 + x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 2·x1 + 2·x2   
POL(U52(x1)) = 2·x1   
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U31(X)) → MARK(X)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(U62(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(U31(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2 + 2·x1   
POL(U41(x1, x2)) = 2·x1 + 2·x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 2·x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
QDP
                                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(cons(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(length(X)) → MARK(X)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(U62(X1, X2)) → MARK(X1)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(length(X)) → MARK(X)
MARK(U62(X1, X2)) → MARK(X1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2 + x1   
POL(U41(x1, x2)) = x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 1 + x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 1 + x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = 2·x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = 2·x1   
POL(length(x1)) = 1 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X)) → ACTIVE(U31(mark(X)))
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(zeros) → ACTIVE(zeros)
The remaining pairs can at least be oriented weakly.

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 1 + x1   
POL(U41(x1, x2)) = x1   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U51(X1, X2)) → MARK(X1)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 1 + x1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(U52(X)) → ACTIVE(U52(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 1   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = 1   
POL(length(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(U51(X1, X2)) → MARK(X1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 1 + x1   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
mark(nil) → active(nil)
U11(active(X)) → U11(X)
U11(mark(X)) → U11(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U31(active(X)) → U31(X)
U31(mark(X)) → U31(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
active(isNat(0)) → mark(tt)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
active(U52(tt)) → mark(tt)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
mark(tt) → active(tt)
mark(U42(X)) → active(U42(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
mark(U31(X)) → active(U31(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U11(X)) → active(U11(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
active(U62(tt, L)) → mark(s(length(L)))
mark(length(X)) → active(length(mark(X)))
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
mark(U21(X)) → active(U21(mark(X)))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U42(tt)) → mark(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
mark(0) → active(0)
active(U21(tt)) → mark(tt)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
QDP
                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U62(tt, L)) → MARK(s(length(L)))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 1   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
mark(nil) → active(nil)
U11(active(X)) → U11(X)
U11(mark(X)) → U11(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U31(active(X)) → U31(X)
U31(mark(X)) → U31(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
active(isNat(0)) → mark(tt)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
active(U52(tt)) → mark(tt)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
mark(tt) → active(tt)
mark(U42(X)) → active(U42(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
mark(U31(X)) → active(U31(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U11(X)) → active(U11(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
active(U62(tt, L)) → mark(s(length(L)))
mark(length(X)) → active(length(mark(X)))
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
mark(U21(X)) → active(U21(mark(X)))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U42(tt)) → mark(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
mark(0) → active(0)
active(U21(tt)) → mark(tt)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
QDP
                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(s(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 1 + x2   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U42(active(X)) → U42(X)
U42(mark(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
QDP
                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U42(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 1 + x1   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
QDP
                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U52(active(X)) → U52(X)
U52(mark(X)) → U52(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
QDP
                                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 0   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 1 + x1 + x2   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 1   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
QDP
                                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U52(X)) → MARK(X)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(isNatList(X)) → ACTIVE(isNatList(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U52(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 1 + x1   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = 1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
QDP
                                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
QDP
                                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(length(X)) → ACTIVE(length(mark(X)))
The remaining pairs can at least be oriented weakly.

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
QDP
                                                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
The remaining pairs can at least be oriented weakly.

ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 0   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = x1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
QDP
                                                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The remaining pairs can at least be oriented weakly.

MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = x2   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
QDP
                                                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.

ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QDPOrderProof
QDP
                                                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QDPOrderProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
QDP
                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QDPOrderProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U62(mark(X1), X2) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QDPOrderProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                                        ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))

The TRS R consists of the following rules:

isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U21(X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
The following rules are removed from R:

isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X)) → U21(X)
U21(mark(X)) → U21(X)
Used ordering: POLO with Polynomial interpretation [25]:

POL(ACTIVE(x1)) = 1 + 2·x1   
POL(MARK(x1)) = 2 + 2·x1   
POL(U21(x1)) = 1 + x1   
POL(active(x1)) = 2·x1   
POL(isNat(x1)) = 1 + 2·x1   
POL(mark(x1)) = 2·x1   
POL(s(x1)) = 1 + 2·x1   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ QDPOrderProof
                                                                                              ↳ QDP
                                                                                                ↳ QDPOrderProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QDPOrderProof
                                                                                                      ↳ QDP
                                                                                                        ↳ QDPOrderProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ UsableRulesReductionPairsProof
QDP
                                                                                                                            ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.